

Structural Calculations BJG# 20070133

Project:

0403-602A

Prepared for:

MicroMetl Corporation

905 Southern Way Sparks, NV 89431

Date:

August 2007

Job#:

20070133

By: Date: TRH 9/6/2007

Page:

1 <u>0403-602A</u>

Frame	and	Sup	nort	Curb	Inform	ation
I I alli Ç	anu	U UU	יייט	Ouib	1111101111	alioi

Product Number 0403-602A-01CBC

h _{FRAME} =	30	in - Overall height from support substrate to top of curb
h _{SUPPORT} =	6	in - Height of support curb from top of isolators to bottom of unit
L _{CURB} =	69	in - Longitudinal distance from center-to-center of transverse curb members
W _{CURB} =	33.25	in - Transverse distance from center-to-center of longitudinal curb members
h _i =	4.5	in - Height of isolator
$d_i =$	7.5	in - Dist. off long member end to isolator
$d_{HD} =$	7.5	in - Dist. off short member end to holddown

Unit Information DR072

W _P =	1052	lbs - Max. unit weight
h _{UNIT} =	34.625	in - Overall unit height above curb
h _{CM} =	21.0	in - Height above curb to center of mass
L _{UNIT} =	82.25	in - Overall unit length (longitudinal direction)
W _{UNIT} =	44.875	in - Overall unit length (transverse direction)

Seismic Loading - 2006 International Building Code (2006 IBC)

$Fp_{MAX} = 1.6$	S * S _{DS} * lp * Wp	
Ss =	2	(2 is worst case in NV, OR, WA, AZ)
Fa≕	1	(1.0 at worst case Site D, Ss ≥ 1.25)
Sms =	2	= FaSs
$S_{DS} =$	1.33	= 2/3 Sms
lp =	1,5	(1.5 at worst case Occupancy)

 $Fp_{MAX} = 3.20$ Wp $Fp_{MAX} = 2.29$ Wp (ASD)

 $Fp_{MAX} =$ 2405 Ib (ASD) - ASD values will be used throughout unless noted otherwise

Seismic Loading - 2001 California Building Code (2001 CBC)

Fp_{MAX} = 4 * Ca * Ip * Wp

1 199 121	, ,	
Ca =[0.44	.44 at worst case at Zone 4, Soil Type Sd)
Na =	1.5](1.5 at worst case Seismic Source Type A <= 2km)
lp=	1.5	(1.5 at worst case Occupancy)
Fp _{MAX} =	3.96	W p
Fp _{MAX} =	2.83	Wp (ASD)
Fp _{MAX} =	2976	lb (ASD) - ASD values will be used throughout unless noted otherwise

Controlling Seismic Loads

Fp _{MAX} =	2.83	Wp (ASD)
Fp _{MAX} =	2976	lb (ASD) - ASD values will be used throughout unless noted otherwise

Wind Loading Check

Max. Projected Area $(A_{MAX}) = h_{UNIT} * MAX (L_{UNIT} \text{ or } W_{UNIT})$

Equivalent wind pressure required to equal seisimic loading (P_{EQ}) = Fp_{MAX} / A_{MAX}

P_{EQ} = 150 psf (ASD) OKAY BY INSPECTION: P > 60 PSF

Job#: 20070133 By: TRH Date: 9/6/2007 Page: 2

0403-602A

Connectors from Unit to Support:

Use Self-drilling, Self Tapping Steel Screws, allowable load per Table IV-7A of the cold formed steel manual #10 screw allowable load in 16 gage minimum material is 463 | Ibs each

Transverse or Longitudinal Loading

$$V_{\text{each side}} = 2/3 * Fp_{\text{MAX}} \text{ (ASD)}$$

$$V_{\text{HD}} = \boxed{ 1984 } \text{ lb per side (where applicable)}$$

Transverse Loading

Holddowns:

i i o i a a o i i i i	O,	
N _{HD} =	3	Number of holddowns per long side
$R_{HD1} = (Fp_1)$	_{MAX} * h _{CM}) /(N _{HD} * W	/ _{CURB}) - 1/3 * W _Р
R _{HD1} =	276	lb per HD uplift
V _{HD} =	0	ib per HD

Max Resultant Force =	276	lb per HD
Min Screws Required =	2	per HD

Isolators

$$\begin{split} R_{MAX} &= (Fp_{MAX}*(h_{cm}+h_s)) \, / \, W_{CURB} + 2/3*W_P \\ R_{MAX} &= \boxed{ 3118 } \quad \text{lb per side - Downward} \\ RISO_{MIN} &= (Fp_{MAX}*(h_{cm}+h_s)) \, / \, W_{CURB} - 1/3*W_P \\ R_{ISO\ MIN} &= \boxed{ 2066 } \quad \text{lb per side } \quad \text{uplift} \\ V_{ISO} &= F_{pMAX}/(\# \, \text{Iso}) \\ V_{ISO} &= \boxed{ 0 } \quad \text{lb per side} \end{split}$$

Longitudinal Loading

Holddowns:

$$\begin{split} R_{HD1} &= (F_{pmax} * h_{cm}) \, / \, (2*(L_{UNIT} - d_{HD}) - 1/6*W_P \\ R_{HD1} &= \begin{array}{c|c} 243 & \text{lb per HD} & \text{Assume all uplift into end holddowns} \\ V_{HD} &= \begin{array}{c|c} 661 & \text{lb per HD} \\ \end{array} \end{split}$$

Max Resultant Force =	704	lb per HD
Min Screws Required =	2	per HD

Isolators:

Job#: 20070133 By: TRH Date: 9/6/2007 Page: 3

0403-602A

Isolator Load Summary

USE 2 TYPE OPA0070 Isolator restraints each long side for shear and vertical USE 0 OPA0070 Isolator restraints each short side for shear

Max. V_{ISO} ↔ = V_{ISO} max. due to transverse or longitudinal loading

Max. $V_{ISO} \leftrightarrow =$ 1984 lb per side

Max. V_{ISO} ↔ = 992 ib each isolator

Max. $R_{ISO} \downarrow$ = max. downward force due to transverse or longitudinal loading

Max. R_{ISO} ↓ = 3118 lb per side

Max. R_{ISO} ↓ = 1559 Ib each isolator

Max. $R_{ISO} \uparrow = max$. uplift force due to transverse or longitudinal loading

Max. R_{ISO} ↑ = 2066 lb per side

Max. R_{ISO} ↑ = 1033 Ib each isolator

PRE-APPROVED MAXIMUM ALLOWABLE LOADS

Allowable Horizontal = 1000 lb each isolator OKAY
Allowable Vertical = 1600 lb each isolator OKAY

Tube Steel Support Assembly

Use 10GA cold-formed overlapping channels, 6" tall, 1.125" wide; Use properties for hollow rectangle Conditions and formulas per AISI Cold-Formed Steel Specification (2001)

Analyze as a beam

Bending: (Per C3.1)

t =	0.134]in
Fy =	33	ksi
b ==	1.125	in
d =	6	in
C _p ==	1.14	AISC 13th ed. Table 3-1
E =	29000	ksi
. G =	11500	ksi
I _y =	0.41]in⁴
J ==	1.71]in ⁴
S _x =	2.057	lin ³
Ax =	1.61	lin ²
$b_1 = b - 2 * t =$	0.857	j in
d ₁ = d - 2 * t =	5.732	in
$L = L_{CURB} - 2 * d_i =$	54	in
$L_u = L/2 =$	27.00	in
$b_{eff} = b - 3 * t =$	0.723	in
$h_{eff} = d - 3 * t =$	5.598	in

Allowed Lateral Unbraced Length, LA

$$L_{A} = 0.36*C_{b}\pi/(FyS_{y})*(EGJIy)^{1/2}$$

$$L_{A} = 291.2 \text{ in}$$

$$\Omega_{b} = 1.67$$
(Eq. C3.1.2.2-1)

If laterally unbraced length is less than or equal to $L_{\rm u}$, then the nominal moment $M_{\rm n}$ shall be used

Lu < La OKAY
$$M_n = S_e F_y$$

$$M_n / \Omega_b = 40.6 \quad \text{k-in} \quad (Eq. C3.1.1-1)$$

Max moment due to center holddown, Mu

$$M_u = (R_{MAX} / L * 1/3L) / 2 * L/2 = R_{MAX} * L / 12$$

$$M_u = 14029.45 | \text{Ib-in}$$

$$M_u = 14.03 | \text{k-in}$$

BENDING OKAY

Job#: 20070133 By: TRH Date: 9/6/2007 Page: 4

0403-602A

Shear: (Pe	<u>r C3.2.1)</u>	
$\Omega_{v} =$	1.60	
h / t =	44.8	
k _v =	5.34	
√(Ek _v / F _y) =	68.5	
Aw =	1.61	lin²

19.80 F_v per Eqs. C3.2.1-2, 3, 4

ksi

Nominal Shear Strength

$$V_n = A_w F_v$$

$$V_n = \boxed{31.8} \text{ kips}$$

$$V_n / \Omega_v = \boxed{19.9} \text{ kips}$$

Max Shear Force

$$V_u = R_{MAX} / 2$$

$$V_u = 1.56 \text{ kips} \qquad \text{OKAY}$$

Web Crippling: (Per C3.4.1)

	7.5	C =
	0.048	C _h =
	0.12	C _N =
	0.08	C _R =
	1.75	Ω _w = N =
]in.	4	N =
lin.	0.25	R =
]。	90	θ =

Note: N = Bearing length per isolator

Nominal Web Crippling Strength

$$P_{n} = Ct^{2}F_{y} \sin \theta (1-C_{R}(R/t)^{1/2})(1+C_{N}(N/t)^{1/2})(1-C_{h}(h/t)^{1/2})$$

$$P_{n} = 4.45 \text{ kips / web (Eq. C3.4.1-1)}$$

$$P_{n} = 8.90 \text{ kips}$$

$$P_{n} / \Omega_{w} = 5.084 \text{ kips}$$

 $P_u = R_{MAX} / \#$ of isolators per side

STIFFENER OKAY

OKAY

Frame Assembly Stiffeners

Use 16 gage stiffener material

Conditions and formulas per AISI Cold-Formed Steel Specification (2001)

t =	0.060	in
Fy=	33	ksi
Length =	7	in
Width =	1.5	in
Height =	20	in
$\Omega_{C} =$	1.8	
A =	0.59	in²
r ₁ =	0.66	in
r ₂ =	2.53	in
kl/r _{min} =	30.4	

$$\begin{split} F_{e} &= \pi^{2}E/(KL/r)^{2} \\ F_{e} &= \boxed{309.96} \text{ ksi } & \text{(Eq. C4.1-1)} \\ \lambda_{c} &= \sqrt{(F_{y}/F_{e})} \\ \lambda_{c} &= \boxed{0.33} \text{ (Eq. C4-4)} \\ F_{n} &= \boxed{25.11} \text{ ksi } & \text{(Eq. C4-2,3)} \\ P_{n} &= A_{e}F_{n} \\ P_{n} &= \boxed{14.89} \text{ kips } \\ P_{n}/\Omega_{c} &= \boxed{8.27} \text{ kips } \\ P_{U} &= R_{MAX}/2 \\ P_{U} &= \boxed{1558.83} \text{ lbs} \end{split}$$

Pu =

1.56

Anchorage to Supporting Structure

Shear to each long side = 1984 lbs Shear to each short side = 1984 lbs

$$\begin{split} R_{ISO\,MIN} &= (Fp_{MAX} * (h_{cm} + h_{frame})) \ / \ W_{CURB} - 1/3 * W_P \\ &\quad Uplift\ to\ each\ long\ side = \boxed{4213} \ lbs \\ R_{ISO\,MIN} &= (Fp_{MAX} * (h_{cm} + h_{frame})) \ / \ (L_{CURB} - 2 * d_i) - 1/3 * W_P \\ &\quad Uplift\ to\ each\ short\ side = \boxed{2460} \ lbs \end{split}$$

Anchorage to Concrete Pad

4 in. thick conrete pad - min. embedment of 3 in., min. spacing of 8 in. and min. edge distance of 6 in.

20070133

TRH

9/6/2007

5

0403-602A

Job#: By:

Date:

Page:

w/ 1/2" Simpson Titen HD, allow = 1605 | lbs in shear w/ 1/2" Simpson Titen HD, allow = 1155 | lbs in tension

Try 4 Titen HD's per long side at a minimum Try 3 Titen HD's per short side

(Actual Shear / Allowable Shear)[^](5/3) + (Actual Tension / Allowable Tension)[^](5/3) ≤1.0

Elliptical Interaction Equation = 0.999 at the long sides OK, less than 1.0 Elliptical Interaction Equation = 0.793 at the short sides OK, less than 1.0

Anchorage to Wood sub-Structure

With Simpson 1/4 x 3" SDS screws...

Anchorage to Steel sub-Structure

8

The steel sub-structure will have wood blocking in place between flutes of metal deck, therefore the required number of SDS screws will be the same as for the wood sub-structure.

total screws required short side

4.7

inches maximum spacing

Job#:

20070133

Ву: Date:

TRH 9/6/2007

Page:

6 0403-602A

Anchorage to Steel

With A307 1/2" Bolts...

t =	0.060	in
$F_y =$	33	ksi
F. =	45	ksi
e≔	1	ìn.
d=	1/2	in.
width≈	3	in.

R _{ISO MIN} =	(Fp _{MAX}	* ((h _{cm}	+	h _{frame}))	/	W _{CURB}	~	1/3 * V	٧ _P

Uplift to each long side = 4213 lbs $R_{ISO\ MIN} = (Fp_{MAX} * (h_{cm} + h_{frame})) / (L_{CURB} - 2 * d_i) - 1/3 * W_P$

Uplift to each short side = 2460 lbs

Note: Connection evaluated

without consideration of bolt hole

deformation.

1984 lbs Shear to each long side = Shear to each short side = 1984 lbs

Design strength based on spacing and edge distance:

Pn=	2.7	kips/bolt
F _u /F _y =	1.36	
Ω=	2.00	
Φ=	0.70	
P _n /Ω=	1.35	kips/boit
ΦP _n =	1.89	kips/bolt
3d=	1 1/2	NOTE: Distance between bolt hole centers must be greater than 3d.
1.5d=	3/4	NOTE: Distance from edge of connection to bolt hole center must be greater than 1.5d

Design strength based on bearing:

NOTE: bolt hole deformation is not considered

C=	3	in ²
m _f =	0.75	Table E3.3.1-2
Ω≔	2.50	
Φ=	0.60	
Pn=	3.0375	kips/bolt
$P_n/\Omega =$	1.215	kips/bolt
ΦP _n =	1.82	kips/bolt

Design strength based on bolt shear:

Pn≖	5.3	kips/bolt	(Table IV-6)
Ω≔	2.40		
Φ=	0.65		
$P_n/\Omega =$	2.21	kips/bolt	
ΦP _n =	3.45	kips/bolt	

Governing limit state:

Governing Limit State

			COVORTING LITTIE CHAR
$P_n/\Omega =$	1.22	kips/bolt	Bearing Strength
ΦP _n =	1.82	kips/bolt	Bearing Strength

4	# of bolts for the long side
3	# of bolts for the short side