

Structural Calculations BJG# 20070133

Project:

0403-652A

Prepared for:

MicroMetl Corporation

905 Southern Way Sparks, NV 89431

Date:

August 2007

20070133

By: Date: TRH 9/6/2007

Page:

1 <u>0403-652A</u>

Product Number 0403-652A-01CBC

h _{FRAME} =	30	in - Overall height from support substrate to top of curb
h _{SUPPORT} =	6	in - Height of support curb from top of isolators to bottom of unit
L _{CURB} =	121.75	in - Longitudinal distance from center-to-center of transverse curb members
W _{CURB} =	79.5	in - Transverse distance from center-to-center of longitudinal curb members
h _i =	4.5	in - Height of isolator
d₁ ==	7.5	in - Dist. off long member end to isolator
d _{HD} =	7.5	in - Dist. off short member end to holddown

Unit Information DH300N32

W _P =	3085	lbs - Max. unit weight
h _{unit} =	52.625	in - Overall unit height above curb
h _{CM} =	35.1	in - Height above curb to center of mass
L _{UNIT} =	136.25	in - Overall unit length (longitudinal direction)
W _{UNIT} =	92	in - Overall unit length (transverse direction)

Seismic Loading - 2006 International Building Code (2006 IBC)

$Fp_{MAX} = 1.6$	* S _{DS} * Ip * Wp	
Ss =	2	(2 is worst case in NV, OR, WA, AZ)
Fa =	1	(1.0 at worst case Site D, Ss ≥ 1.25)
Sms =	2	= FaSs
S _{os} =	1.33	= 2/3 Sms
lp =	1.5	(1.5 at worst case Occupancy)
Fp _{MAX} =	3.20	Wp
Fp _{MAX} =	2.29	Wp (ASD)
Fp _{MAX} ≖	7051	lb (ASD) - ASD values will be used throughout unless noted otherwise

Seismic Loading - 2001 California Building Code (2001 CBC)

Colonia Educing - 2001 Camorria Banding Code (2001 CEO)				
Fp _{MAX} = 4 *	Ca * lp * Wp			
Ca =	0.44	(.44 at worst case at Zone 4, Soil Type Sd)		
Na =	1.5	(1.5 at worst case Seismic Source Type A <= 2km)		
lp =	1.5	(1.5 at worst case Occupancy)		
Fp _{MAX} =	3.96	Wp		
Fp _{MAX} =	2.83	Wp (ASD)		
Fp _{MAX} ≔	8726	lb (ASD) - ASD values will be used throughout unless noted otherwise		

Controlling Seismic Loads

Fp _{MAX} =	2.83	Wp (ASD)
Fp _{MAX} =	8726	lb (ASD) - ASD values will be used throughout unless noted otherwise

Wind Loading Check

Max. Projected Area (A_{MAX}) = $\underline{h_{UNIT} * MAX}$ (L_{UNIT} or W_{UNIT})

Equivalent wind pressure required to equal seisimic loading (P_{EQ}) = Fp_{MAX} / A_{MAX}

P_{EQ} = 175 psf (ASD) OKAY BY INSPECTION: P > 60 PSF

Job#: 20070133 By: TRH Date: 9/6/2007 Page: 2

0403-652A

Connectors from Unit to Support:

Use Self-drilling, Self Tapping Steel Screws, allowable load per Table IV-7A of the cold formed steel manual #10 screw allowable load in 16 gage minimum material is 463 lbs each

Transverse or Longitudinal Loading

$$V_{\text{each side}} = 2/3 * \text{Fp}_{\text{MAX}} \text{ (ASD)}$$

$$V_{\text{HD}} = \boxed{ 5817} \text{ lb per side (where applicable)}$$

Transverse Loading

Holddowns:

N _{HD} =	3	Number of holddowns per long side
$R_{HD1} = (Fp_M)$	$_{\rm AX}$ * $h_{\rm CM}$) /($N_{\rm HD}$ * $W_{\rm C}$	_{CURB}) - 1/3 * W _P
R _{HD1} =	255	lb per HD uplift
V _{HD} =	0	lb per HD

Max Resultant Force	=	255	lb per HD
Min Screws Required :	*	2	per HD

Isolators:

$$\begin{split} R_{\text{MAX}} &= \left(\text{Fp}_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{s}}\right)\right) / \,W_{\text{CURB}} + 2/3 * W_{\text{P}} \\ R_{\text{MAX}} &= \boxed{6566} \quad \text{lib per side - Downward} \\ RISO_{\text{MIN}} &= \left(\text{Fp}_{\text{MAX}} * \left(h_{\text{cm}} + h_{\text{s}}\right)\right) / \,W_{\text{CURB}} - 1/3 * W_{\text{P}} \\ R_{\text{ISO MIN}} &= \boxed{3481} \quad \text{lib per side} \quad \text{uplift} \\ V_{\text{ISO}} &= F_{\text{pMAX}} / (\# \text{Iso}) \\ V_{\text{ISO}} &= \boxed{0} \quad \text{lib per side} \end{split}$$

Longitudinal Loading

Holddowns:

$$R_{HD1} = \frac{(F_{pmax} * h_{cm}) / (2*(L_{UNIT} - d_{HD}) - 1/6*W_p}{R_{HD1} = 675}$$

$$V_{HD} = 1939$$
| Ib per HD | Assume all uplift into end holddowns | Ib per HD

Max Resultant Force =	2053	lb per HD
Min Screws Required =	5	per HD

Isolators:

$$\begin{split} R_{MAX} &= (\text{Fp}_{MAX} * (\text{h}_{cm} + \text{h}_{s})) \, / \, (\text{L}_{CURB} \text{--} 2\text{d}_{i}) + 2/3 * \text{W}_{P} \\ R_{MAX} &= \boxed{ 5415} \quad \text{lb per side -- Downward} \\ R_{ISO \, MIN} &= \boxed{ (\text{Fp}_{MAX} * (\text{h}_{cm} + \text{h}_{s})) \, / \, (\text{L}_{CURB} \text{--} 2\text{d}_{i}) - 1/3 * \text{W}_{P} } \\ R_{ISO \, MIN} &= \boxed{ 2330} \quad \text{lb per side } \end{aligned} \quad \text{uplift} \\ V_{ISO} &= V_{\text{each side}} \\ V_{ISO} &= \boxed{ 5817} \quad \text{lb per side} \end{split}$$

	Job#: By: Date: Page:	20070133 TRH 9/6/2007 3 0403-652A
Isolator Load Summary USE 5		vertical
Max. $V_{ISO} \leftrightarrow =$ 5817 Ib per side Max. $V_{ISO} \leftrightarrow$	= 831 lib	each isolator
Max. $R_{ISO}\downarrow$ = max. downward force due to transverse or longitudinal loading Max. $R_{ISO}\downarrow$ = 6566 lb per side Max. $R_{ISO}\downarrow$	= 1313 lb	each isolator
Max. $R_{ISO} \uparrow = max$. uplift force due to transverse or longitudinal loading		
Max. $R_{ISO} \uparrow = 3481$ lb per side Max. $R_{ISO} \uparrow$	= 696 lb	each isolator
PRE-APPROVED MAXIMUM ALLOWABLE LOADS Allowable Horizontal = 1000 lb each isolator OKAY Allowable Vertical = 1600 lb each isolator OKAY		
Tube Steel Support Assembly Use HSS 2x6 Tube Steel, 6" tall, 2" wide; Use properties for hol		
Conditions and formulas per AISI Cold-Formed Steel Specification (2001)	Analyze as a	beam
Bending: (Per C3.1) t = 0.125 in		
Fy = 46 ksi Allowed Lateral Unbra	iced Length, L	Δ.
$b = 2$ in $L_A = 0.36 * C_b \pi / (FyS)$,)*(EGJly) ^{1/2}	
$d = 6$ in $L_A = 551.3$	∏in (E	Eq. C3.1.2.2-1)
$C_b = 1.14$ AISC 13th ed. Table 3-1 $\Omega_b = 1.67$	┪ `	•
E = 29000 ksi	_	
G = 11500 ksi If laterally unbraced length		
$l_y = 1.43$ in ⁴ to L_u , then the nominal more	ent M _n shall be	e used
J = 4.50 in ⁴ Lu < La Oh		
$S_x = 2.357 in^3 M_n = S_e F$	у	
$Ax = 1.50 in^2 M_n / \Omega_b = 64.9$	k-in Ta	able 3-12 AISC
b ₁ = b - 2 * t = 1.75 in		
$d_1 = d - 2 * t = $ in Max moment due to cen	·	Mu
$L = (L_{CUR8} - 2 * d_i)/2 = $ 53.375 in $M_u = WL^2$	/8	
$L_u = L/2 =$ 26.69 in $M_u =$ 43808.1	2 lb-in	
$b_{eff} = b - 3 * t = $ 1.625 in $M_u = $ 43.81	k-in	
h _{eff} = d - 3 * t = 5.625 in	· ·	
BENDING O	KAY	

20070133 Job#: TRH Ву: Date: 9/6/2007 Page:

0403-652A

Shear: (Per C3.2.1)

Nominal Shear Strength

$$V_n = A_w F_v$$
 $V_n = 41.4$ kips (Eq. C3.2.1-1)
 $V_n / \Omega_v = 25.9$ kips

Max Shear Force

$$V_u = R_{MAX} / 2$$
 $V_u = 3.28$ kips OKAY

Web Crippling: (Per C3.4.1)

יקקווע טיי	1119, 11 01 00,7.17	
C =	7.5	
C _h =	0.048	
C _N =	0.12	
C _R =	0.08	
Ω _w = N =	1.75	
N =	4	in.
R =	0.25	in.
9 =	90	٩
		•

Note: N = Bearing length per isolator

Nominal Web Crippling Strength

$$\begin{split} P_n &= Ct^2 F_y \sin \theta (1 - C_R (R/t)^{1/2}) (1 + C_N (N/t)^{1/2}) (1 - C_h (h/t)^{1/2}) \\ P_n &= \begin{array}{c} 5.36 \\ P_n &= \end{array} & \text{kips / web (Eq. C3.4.1-1)} \\ P_n / \Omega_w &= \begin{array}{c} 6.122 \\ \text{kips} \end{array} \end{split}$$

$$P_u = R_{MAX} / \#$$
 of isolators per side

$$P_u =$$
 1.313 kips (long side)
 $P_u =$ 2.71 kips (short side)

OKAY

Frame Assembly Stiffeners

Use 12 gage stiffener material

Conditions and formulas per AISI Cold-Formed Steel Specification (2001)

t =	0.105	in
Fy =	33	ks
Length =	7	in
Width =	1.5	in
Height =	20	in
$\Omega_{C} =$	1.8	
A =	1.03	in-
r ₁ ==	0.65	ìn
r ₂ ≈	2.51	in
kl/r _{min} =	30.8	

$$F_e = \pi^2 E / (KL/r)^2$$

 $F_e = 301.18 \text{ ksi}$

= 301.18 ksi (Eq. C4.1-1)
$$\lambda_c = \sqrt{(F_y/F_e)}$$

$$P_U =$$
 3283.04 lbs $P_U =$ 3.28 kips

STIFFENER OKAY

20070133

Ву: Date:

TRH 9/6/2007

Page:

5 0403-652A

Anchorage to Supporting Structure

Shear to each long side = Shear to each short side =

lbs

lbs

5817

 $R_{\text{ISO MIN}} = \left(Fp_{\text{MAX}} * (h_{\text{cm}} + h_{\text{frame}})\right) / W_{\text{CURB}} - 1/3 * W_{\text{P}}$

Uplift to each long side = 6115 lbs

 $R_{ISO\;MIN} = (Fp_{MAX} * (h_{cm} + h_{frame})) / (L_{CURB} - 2 * d_i) - 1/3 * W_P$

Uplift to each short side = 4292

Anchorage to Concrete Pad

4 in. thick conrete pad - min. embedment of 3 in., min. spacing of 8 in. and min. edge distance of 6 in.

w/ 1/2" Simpson Titen HD, allow =

1605

lbs in shear

w/ 1/2" Simpson Titen HD, allow =

1155 ibs in tension

Try

Titen HD's per long side at a minimum

Try

Titen HD's per short side 6

(Actual Shear / Allowable Shear)^(5/3) + (Actual Tension / Allowable Tension)^(5/3) ≤1.0

Elliptical Interaction Equation =

0.962

at the long sides

OK, less than 1.0

Elliptical Interaction Equation =

0.882 at the short sides OK, less than 1.0

Anchorage to Wood sub-Structure

With Simpson 1/4 x 3" SDS screws...

Allow Shear =

470

lb per simpson catalog

Allow Tension =

550

Ib assuming 2" penetration per NDS Table 11.2B (#14 wood screw)

7

screws required for uplift long side

5

screws required for uplift short side

13

screws required for shear both sides

20 18 total screws required long side total screws required short side 6.40

inches maximum spacing

4.6

inches maximum spacing

20070133

By: Date: TRH 9/6/2007

Page:

6 0403-652A

Anchorage to Steel

With A307 1/2" Bolts...

Note: Connection evaluated without consideration of bolt hole deformation.

$$\begin{split} R_{ISO\;MIN} &= (Fp_{MAX}\;^*\;(h_{cm} + h_{frame})) \: / \: W_{CURB} - 1/3 \;^* \: W_P \\ &\quad Uplift\; to \; each \; long \; side = \boxed{\quad 6115 \quad} lbs \\ R_{ISO\;MIN} &= (Fp_{MAX}\;^*\;(h_{cm} + h_{frame})) \: / \: (L_{CURB} - 2 \;^* d_i) - 1/3 \;^* \: W_P \\ &\quad Uplift\; to \; each \; short \; side = \boxed{\quad 4292 \quad} lbs \end{split}$$

Shear to each long side = 5817 lbs Shear to each short side = 5817 lbs

Design strength based on spacing and edge distance:

P _n =	2.7	kips/bolt
$F_u/F_y=$	1.36	
Ω=	2.00	
Ф=	0.70	
$P_n/\Omega=$	1.35	kips/bolt
ΦP _n ≔	1.89	kips/bolt
3d=	1 1/2	NOTE: Distance between bolt hole centers must be greater than 3d.
1.5d=	3/4	NOTE: Distance from edge of connection to bolt hole center must be greater than 1.5d

Design strength based on bearing:

NOTE: bolt hole deformation is not considered

C=	3	in ²
m _f =	0.75	Table E3.3.1-2
Ω=	2.50	
Φ=	0.60	
P _n =	3.0375	kips/bolt
$P_n/\Omega = \Phi P_n =$	1.215	kips/bolt
ΦPn≂	1.82	kips/bolt

Design strength based on bolt shear:

P _n =	5.3	kips/bolt	(Table IV-6)
Ω=	2.40		
Ф=	0.65		
$P_n/\Omega =$	2.21	kips/bolt	
$\Phi P_n =$	3.45	kips/bolt	
$\Phi = P_n/\Omega = 0$	0.65 2.21	•	

Governing limit state:

Governing Limit State

		,	COVOLINING ENTIRE OF
P _n /Ω≈	1.22	kips/bolt	Bearing Strength
ΦP _n =	1.82	kips/bolt	Bearing Strength

6	#	of	bolts	for	the	long s	side
4	#	of	bolts	for	the	short	side